Abstract
This research article presents an overview of the hydrothermal synthesis of nanostructured tungsten oxide (WO3) and its electrochromic (EC) performance. A remarkable evolution in the past few years of producing pure and fine WO3 nanostructures using mild hydrothermal synthesis has received great attention. The hydrothermal process is highly suited for producing monodispersed nanoparticles with control over size and morphology, low processing temperature, and easy synthesis. In this article, we developed a facile seed layer-free hydrothermal approach for preparing WO3 thin films with improved EC performance. Structural and morphological properties were studied using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The electrochemical stability of the propylene glycol-assisted nanostructured WO3 film was examined in lithium per chlorate-propylene carbonate (LiClO4-PC) electrolyte for prolonged color/bleach cycles. The results showed an improvement in electrochemical stability with fast response time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.