Abstract
A numerical method, the quasi-vortex-lattice method (QVLM), was applied to predict the propulsive performance of three naturally occurring oscillating propellers. These were cetacean flukes for a fin whale ( Balaenoptera physalus); white-sided dolphin ( Lagenorhynchus acutus); and white whale ( Delphinapterus leucas). The fin whale's flukes had the highest aspect ratio (6.1) and moderate sweep angle (31°); the white-sided dolphin's flukes had the highest sweep angle (47°) and lowest aspect ratio (2.7); and the white whale's flukes had moderate aspect ratio (3.3) and the lowest sweep angle (28°). In the numerical simulations, the planforms were assumed to be rigid both in chordwise and spanwise directions, and to be oscillating harmonically in an irrotational, incompressible fluid. Calculation and comparisons of propulsive efficiency and thrust coefficient vs advance ratio for each of the planforms were made in three cases: varied heave amplitude; different pitching axis positions; and varied angular amplitude of pitch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.