Abstract

In this paper, novel propulsion of micro/millimeter-sized water-floating objects has been experimentally demonstrated. When an acoustic wave propagates onto air bubbles in a liquid medium, the bubbles oscillate and generate cavitational microstreaming flows; this can be used to propel small water-floating objects. This propulsion concept is simple, but the propulsion can provide sufficient force to propel the water-floating objects without electrical connecting wires and mechanical moving parts. In this study, we prepared open-box-type micro/millimeter-sized objects using a thin Al film. We then experimentally realized linear and rotational motions and two-dimensional maneuvers on the surface of water. The effects of the frequency of the acoustic wave and the applied voltage on the motions are quantified with the bubble oscillation amplitude using high speed images. Such water-floating objects propelled by oscillating microbubbles can be integrated with cameras and sensors and used in environment monitoring systems or surveillance security systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.