Abstract

Various energy sources for interstellar flight are reviewed. Two more “non-conventional” energy sources were proposed in a recent paper: (1) energy delivery during “pionization” of nuclear matter through nuclear matter compression in heavy nuclei collisions and (2) generation of the energy in muon-catalysed “cold” fusion in compressed hydrogen. After a short discussion of the physical principles of the “pionization” of the nuclear matter, the engine design concept is sketched. It has some advantages in comparison to the annihilation propulsion. In laboratory reference system after nuclear matter pionization, all the pions and the resulting particles after decay of pions will move inside of the narrow pionization cone. Power supply of the heavy ion accelerator will extract some part of the energy from the nozzle of the propulsion engine. This would be the magneto-hydrodynamics (m-h-d) power unit based on the Hall effect. Muon-catalysed fusion as the energy source is possible thanks to the discovery of the multiple tritium + deuterium (T + D) synthesis catalysed by one muon. It is possible to combine muon-catalysed fusion with the nuclear fission process. Commercial fusion-fission hybrid reactor would require 100–300 fusions per muon. The principles of the muon-catalysed fusion are shortly discussed. The advantage of the muon-catalysis in T + D mixture is explained because existence of nuclear resonance in deuterium-tritium-muon fusion. This is the reason why the sticking probability muon-α particle is so small (0.4%). A conception of the muon-catalysed “cold” fusion reactor is presented. The pions and muons are produced and stopped in D + T fuel itself. Many technical details are discussed more briefly, e.g. the probability of negative pion production at various projectiles and targets, average energy to produce one negative muon, muon-catalysed fusion-fission systems, advantages of the fusion-fission systems. In the paper is shown a block scheme of the “cold” fusion reactor and propulsion unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call