Abstract

The junction between two different nanotubes can be realized by the simple insertion of a pentagon-heptagon pair defect while preserving the triple coordination of each C atom. This insertion bends the structure to an angle depending on the distance between the pentagon and heptagon. The atomic structure of several of these junctions was optimized with the help of empirical potentials, the nanotubes on both sides of the junctions being considered as infinitely long. Local densities of C electronic states were evaluated in the interfacial regions from a tight-binding Hamiltonian. From there, the electronic energy of these junctions was calculated and compared with that of the isolated nanotubes. It was established that the energy associated with the pentagon-heptagone pair in a graphitic tubule is of the order of 6 eV. An automatic generation algorithm for connecting any two tubules was developed. By restricting the Hamiltonian to the sole orbitals, this algorithm made it feasible to study the energetics of the pentagon-heptagon defect in a systematical way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.