Abstract

Retrograde CoS-impregnation was used to trace and map the course of sensory nerves and the distribution and innervation of the various proprioceptor types in all leg segments of Cupiennius salei, a Ctenid spider. 1. Sensory nerve branches. In both the tibia and femur, axons of all proprioceptor types ascend in just two lateral nerves which do not merge with the main leg nerve until they reach the next proximal joint region. In the short segments — coxa, trochanter, patella, and tarsus — axons of the internal joint receptors often run separately from those of the other sensilla. Axons of the large lyriform slit sense organ at the dorsal metatarsus and of the trichobothria join with only a few hair axons and form their own nerve branches (Figs. 1, 2, 3). 2. Proprioceptors. Each of the seven leg joints is supplied with at least one set of the well-known internal joint receptors, slit sensilla (single slits and lyriform organs), and long cuticular hairs. In addition, we found previously unnoticed “hair plates” on both sides of the coxa, near the prosoma/coxa joint; they are deflected by the articular membrane during joint movements (Fig. 4). 3. Sensory cells and innervation. CoS-impregnation shows that each slit of the slit sense organs — be it a single slit or several slits in a lyriform organ — is innervated by two bipolar sensory cells (Fig. 6). We also confirm previous reports of multiple innervation in the internal joint receptors and in the long joint hairs and cuticular spines. Most of the ascending nerve branches run just beneath the cuticle for at least a short distance (Fig. 5); hence they are convenient sites for electrophysiological recordings of sensory activity even in freely walking spiders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call