Abstract

BackgroundThe anterior cruciate ligament (ACL) is one of the most important structures maintaining stability of knee joints, and the proprioception of the ACL plays a key role in it. If the ACL is injured in the unilateral knee joint, it changes nerve electrophysiology, morphology, and quantity of the proprioceptors in the bilateral ACL. The aim of this study was to explore the proprioceptive changes in the bilateral knee joints following unilateral ACL injury, and to provide a theoretical foundation and ideas for clinical treatment.Material/MethodsNine normal cynomolgus monkeys were chosen and used to developed a model of unilateral ACL injury, and 3 monkeys without modeling were used as blank control. At the 4th, 8th, and 12th weeks, the changes in ACL nerves were inspected using electrophysiology [somatosensory evoked potentials (SEPs) and motor nerve conduction velocity (MCV)], and the changes of morphology and quantity of the proprioceptors in ACL were observed and measured under gold chloride staining.ResultsOn the injured and contralateral knee joints, the incubations were extended and the amplitudes were decreased over time. In addition, with the extension of time, the total number of proprioceptors in the ACL decreased, and the variable number of proprioceptors in the ACL increased.ConclusionsACL injury leads to attenuation of proprioception on the injured side, and also leads to the attenuation of proprioception on the contralateral side, and there is a tendency could get worse over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call