Abstract

BackgroundTo investigate the optimal placement and size of adhesive thyroid cartilage electrodes (ATCEs) placed on the thyroid cartilage in porcine models for evaluating recurrent laryngeal nerve function compared with the other 3 recording electrode types.MethodsFour Meishan piglets were used for this study. The electromyogram (EMG) signal stability was detected by intraoperative nerve monitoring (IONM). Best location and size of ATCEs were detected, and the EMG signals from each were compared. Latency data were tested by stimulating the different nerve points, and 6 manipulations of the trachea and endotracheal tube (ET) were applied to test the stability of EMG signals. ET electrodes, needle electrodes, and transcutaneous recording electrodes were simultaneously tested with comparison to ATCEs.ResultsThe optimal placement locations and sizes of ATCEs were determined. The amplitudes and latencies recorded from the ATCEs were consistent with those of the ET electrodes. More anti-interference was observed with the ATCEs than with the ET electrodes in surgical manipulations. ATCEs could be used during intermittent and continuous monitoring in similar fashion to ET electrodes and needle electrodes.ConclusionsATCEs had consistent monitoring function with ET electrodes and needle electrodes. Feasibility, EMG stability, and optimal location and size of ATCEs for IONM were resolved. The EMG profiles from the ATCEs were more stable during surgical manipulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.