Abstract

In this paper, we consider the problem of generating concise but accurate naive Bayes classifiers using taxonomy of propositionalized attributes. For the problem, we introduce propositionalized attribute taxonomy guided naive Bayes Learner (PAT-NBL), a machine learning algorithm that effectively utilizes taxonomy to generate compact classifiers. We extend classical naive Bayes learner to the PAT-NBL algorithm that traverses over a propositionalized taxonomy to search for a locally optimal cut. PAT-NBL uses bottom-up search to find the locally optimal cut on a given taxonomy. For the evaluation of candidate cuts, we apply conditional log-likelihood, conditional minimum description length, and conditional Akaike information criterion. The detected cut enables PAT-NBL to construct an instance space which corresponds to the taxonomy and the data. That is, after PAT-NBL determines a cut according to its information-theoretic criteria, the algorithm generates a concise naive Bayes classifier based on the cut. Our experimental results on UCI Machine Learning benchmark data sets indicate that the proposed algorithm can generate naive Bayes classifiers that are more compact and often comparably accurate to those produced by standard naive Bayes learners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.