Abstract

This study proposes a new contribution to solve the problem of automatic landmarks detection in three-dimensional cephalometry. 3D images obtained from CBCT (cone beam computed tomography) equipment were used for automatic identification of twelve landmarks. The proposed method is based on a local geometry and intensity criteria of skull structures. After the step of preprocessing and binarization, the algorithm segments the skull into three structures using the geometry information of nasal cavity and intensity information of the teeth. Each targeted landmark was detected using local geometrical information of the volume of interest containing this landmark. The ICC and confidence interval (95% CI) for each direction were 0, 91 (0.75 to 0.96) for x- direction; 0.92 (0.83 to 0.97) for y-direction; 0.92 (0.79 to 0.97) for z-direction. The mean error of detection was calculated using the Euclidian distance between the 3D coordinates of manually and automatically detected landmarks. The overall mean error of the algorithm was 2.76 mm with a standard deviation of 1.43 mm. Our proposed approach for automatic landmark identification in 3D cephalometric was capable of detecting 12 landmarks on 3D CBCT images which can be facilitate the use of 3D cephalometry to orthodontists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.