Abstract
Toxic and low-pressure deep-ultraviolet (DUV) mercury lamps have been used widely for applications of surface disinfection and water sterilization. The exposure of pathogens to 254nm DUV radiations has been proven to be an effective and environmentally safe way to inactivate germs as well as viruses in short time. To replace toxic mercury DUV lamps, an n +-A l G a N tunnel junction (TJ)-based DUV light-emitting diode (LED) at 254nm emission has been investigated. The studied conventional LED device has maximum internal quantum efficiency (IQE) of 50% with an efficiency droop of 18% at 200A/c m 2. In contrast, the calculated results show that a maximum IQE of 82% with a 3% efficiency droop under a relatively higher injection current was estimated by employing a 5nm thin n +-A l G a N TJ with a 0.70 aluminum molar fraction. In addition, the TJ LED emitted power has been improved significantly by 2.5 times compared with a conventional LED structure. Such an efficient n +-A l G a N TJ-based DUV LED at 254nm emission might open a new way, to the best of our knowledge, for the development of safe and efficient germicidal irradiation sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.