Abstract

Accurate prediction of heating and cooling loads in residential buildings is crucial for both researchers and practitioners. This study employs advanced forecasting techniques, utilizing support vector regression and extreme gradient boosting methods, enhanced by state-of-the-art metaheuristic algorithms. The metaheuristic optimizers applied include the Satin Bowerbird Optimizer, Ant Lion Optimizer, Artificial Ecosystem-Based Optimizer, Slime Mold Optimizer, Moth-Flame Optimizer, and Particle Swarm Optimizer. These optimizers are strategically used to refine the forecasting models, optimizing their parameters for increased precision. To evaluate the models, a suite of statistical indices is used, including mean square error, root mean square error, Mean Absolute Percentage Error, Mean Absolute Error, Relative Absolute Error, coefficient of correlation, Coefficient of Determination, and Normalized Mean Square Error. This comprehensive analysis assesses the effectiveness of the forecasting methods. The study's findings highlight that the combination of the Satin Bowerbird Optimizer and extreme gradient boosting is particularly effective, achieving high coefficients of determination for cooling and heating load predictions (0.95826 and 0.938048, respectively). This hybrid algorithm shows remarkable performance, with minimal error values and consistent convergence across various datasets. In summary, this research underscores the efficiency of integrating sophisticated machine learning models with metaheuristic optimization techniques, particularly identifying a potent hybrid algorithm for the accurate prediction of heating and cooling loads in residential buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call