Abstract

This paper employs dispersed nanoparticles (NPs) to build an adaptive neuro-fuzzy system (ANFIS) for predicting their thermal conductivity (TC) and viscosity according to the most important input data including concentration, size, the thickness of the interfacial layer, and intensive properties of NPs. In this regard, we gather an extensive and comprehensive data set from different sources. Here, the ANFIS model factors are optimized by using the particle swarm optimization (PSO) technique. Afterward, the obtained results are compared with previously published models which did a better job in predicting target values. In the following, to investigate the validity of our proposed model, statistical and graphical techniques are employed and it was proved that this model is efficient to evaluate the output values. Amounts of results obtained from the PSO-ANFIS model evaluation are 0.988 and 0.985 for the R2 and 0.0156 and 0.0876 for root mean squared error (RMSE) of TC ratio and viscosity ratio values, respectively, letting out a valid forecast of targets. Finally, by performing various statistical analyzes, it can be said that this model shows a high ability to predict target values and can be considered a good alternative to previous models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.