Abstract

Gully erosion is considered to be one of the main causes of land degradation in arid and semi-arid territories around the world. In this research, gully erosion susceptibility mapping was carried out in Semnan province (Iran) as a case study in which we tested the efficiency of the index of entropy (IoE), the Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method, and their combination. Remote sensing and geographic information system (GIS) were used to reduce the time and costs needed for rapid assessment of gully erosion. Firstly, a gully erosion inventory map (GEIM) with 206 gully locations was obtained from various sources and randomly divided into two groups: A training dataset (70% of the data) and a validation dataset (30% of the data). Fifteen gully-related conditioning factors (GRCFs) including elevation, slope, aspect, plan curvature, stream power index, topographical wetness index, rainfall, soil type, drainage density, distance to river, distance to road, distance to fault, lithology, land use/land cover, and soil type, were used for modeling. The advanced land observing satellite (ALOS) digital elevation model with a spatial resolution of 30 m was used for the extraction of the above-mentioned topographic factors. The tolerance (TOL) and variance inflation factor (VIF) were also included for checking the multicollinearity among the GRCFs. Based on IoE, we concluded that soil type, lithology, and elevation were the most significant in terms of gully formation. Validation results using the area under the receiver operating characteristic curve (AUROC) showed that IoE (0.941) reached a higher prediction accuracy than VIKOR (0.857) and VIKOR-IoE (0.868). Based on our results, the combination of statistical (IoE) models along with remote sensing and GIS can convert the multi-criteria decision-making (MCDM) models into efficient and powerful tools for gully erosion prediction. We strongly suggest that decision-makers and managers should use these kinds of results to develop more consistent solutions to achieve sustainable development on degraded lands such as in the Semnan province.

Highlights

  • Various forms of water-related erosion are known, of which gully erosion is one of the most destructive types [1]

  • According to the definitions given by the pioneer investigations about gullies [10,11,12,13,14], the depth and width of a specific gully can range from 30 cm to several meters, and its length can reach up to several hundred meters

  • We demonstrated that the spatial distribution of gully erosion can be predicted by exploiting geographic information system (GIS) analysis tools and establishing statistical relationships between gully occurrence and variability of physical variables related to topography, bedrock, soils, land cover, and rainfall

Read more

Summary

Introduction

Various forms of water-related erosion are known, of which gully erosion is one of the most destructive types [1]. Gullies are able to destroy the surface and sub-surface horizons of the soil and cause the deformation of the land, generating massive economic damage to humankind, such as through the destruction of agricultural land, infrastructure, ecosystems, and desertification, and by intensifying the discharge of surface runoff, causing a fall in the groundwater level and creating environmental hazards such as floods [2,3,4]. Gully erosion results in many socio-economic problems and can threaten the sustainable development of countries [5]. Some scientists divided gullies into different groups. Ireland et al [10] categorized the forehead of the gully into four groups: Pointed, rounded, notched, and digitized. They divided the linear profiles of the gully forehead into four categories: Inclined, vertical, cave, and cave with overhanging root mat or sod

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call