Abstract

BackgroundThe WHO Pesticide Evaluation Scheme to evaluate the efficacy of insecticides does not include the testing of a lethal effect at a distance. A tool was developed to evaluate the spatial mortality of an insecticide product against adult mosquitoes at a distance under laboratory and field conditions. Operational implications are discussed.MethodsInsecticide paint, Inesfly 5A IGR™, containing two organophosphates (OPs): chlorpyrifos and diazinon, and one insect growth regulator (IGR): pyriproxyfen, was the product tested. Laboratory tests were performed using “distance boxes” with surfaces treated with one layer of control or insecticide paint at a dose of 1 kg/6 sq m. Field tests were conducted up to 12 months in six experimental huts randomly allocated to control or one or two layers of insecticide paint at 1 kg/6 sq m. All distance tests were performed using reference-susceptible strains of Anopheles gambiae and Culex quinquefasciatus left overnight at a distance of 1 m from control or treated surfaces.ResultsAfter an overnight exposition at distances of 1 m, field and laboratory evaluations at 0 months after treatment (T0) yielded 100% mortality rates on surfaces treated with one layer at 1 kg/6 sq m against susceptible strains of An. gambiae and Cx. quinquefasciatus. Testing for long-term efficacy in the field gave mortality rates of 96-100% after an overnight exposition at a distance of 1 m for up to 12 months in huts where a larger volume was treated (walls and ceilings) with one or two layers of insecticide paint.ConclusionA comprehensive evaluation of the full profile of insecticide products, both upon contact and spatially, may help rationalize vector control efforts more efficiently. Treating a large enough volume may extend a product’s mortality efficacy in the long-term, which contact tests would fail to assess. It is hereby proposed to explore the development of cost effective methods to assess spatial mortality and to include them as one additional measurement of insecticide efficacy against mosquitoes and other arthropod vectors in WHOPES Phase I and Phase II studies.

Highlights

  • The WHO Pesticide Evaluation Scheme to evaluate the efficacy of insecticides does not include the testing of a lethal effect at a distance

  • The objective of this paper is to propose the use of spatial mortality tests as part of the World Health Organization Pesticide Evaluation Scheme (WHOPES) in the light of results obtained in the laboratory (Phase I) using “distance boxes” and in the field (Phase II) in experimental huts

  • The results obtained in the laboratory and the field were similar at T0: 100% mortality rates were observed on surfaces treated with one layer of insecticide paint at the recommended dose of 1 kg/6 sq m against susceptible An. gambiae Kisumu and Cx. quinquefasciatus S-Lab

Read more

Summary

Introduction

The WHO Pesticide Evaluation Scheme to evaluate the efficacy of insecticides does not include the testing of a lethal effect at a distance. The strategies chosen will depend on several factors, such as resistance to insecticides, availability of treatment and/or resistance to available drugs, difficulties in developing a vaccine, existence of operational genetic control programmes, and longterm sustainability. Tests currently used include classical WHO contact bioassays [6,7], tunnel tests [8,9] and early morning collections in experimental huts [10,11] These tests provide key information on the impact of insecticide products, such as long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS), upon contact both in the laboratory and the field, but does not provide information on the possible lethal effect at a distance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call