Abstract

Abstract The structure of lignin in the compound middle lamella (CML) of softwood tracheids differs from that in the secondary wall (SW) in regard to the content of condensed structures (5-5′-biphenyl, dibenzodioxocin and 4-O-5′-diphenyl ether). In an early stage of cell wall formation, random coarse networks composed of thin cellulose microfibrils (CMFs), hemicelluloses, and pectin are formed in the CML, then globular p-hydroxyphenyl/guaiacyl lignin (HG-lignin) is deposited quickly into the network. The globular lignin is assumed to be a micellar aggregate of oligolignols folded at the β-O-4 bond with their phenolic ends on the outer part of the aggregate. When 3D clusters of the globules are deposited on the preformed network of polysaccharides, further growth of the oligolignols by endwise addition of new monolignols is spatially limited, so frequent condensation occurs between growing aromatic ends of adjacent HG-oligolignols within the globule and between the wide contact boundaries of the 3D clustered globules to produce a highly condensed supramolecule in CML. In SW, the folded G-oligolignols are deposited slowly in the narrow tubular space surrounding thick CMFs coated with hemicelluloses. Condensation occurs mostly between adjacent growing ends of the oligolignols within the tubular aggregates. Spatial regulation of condensation of folded polylignols is one of the factors producing a different supramolecular structure for CML lignin than for SW lignin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.