Abstract

The structural configuration of thiolate-protected gold nanoclusters plays a pivotal role in elucidating the correlation between their structure and properties, comprehending their stability, and guiding experimental synthesis. In this study, utilizing the grand unified model and the ring model, we employed an innovative strategy of fusing triangular Au3 and tetrahedral Au4 elementary blocks by sharing a gold atom to design the gold core, predicting the structure of the Au40(SR)24 nanoclusters. Density functional theory calculations indicate that with the protective ligands simplified to methyl groups the energy of the predicted Au40(SR)24 is 0.45 eV lower than that of the experimentally reported Au40(o-MBT)24 nanoclusters, implying its substantial stability. Furthermore, the calculated UV absorption spectrum and circular dichroism spectrum of predicted Au40(SR)24 are consistent with the experimental results of Au40(SC2H4Ph)24 nanoclusters, suggesting that the predicted structure is a likely candidate for the structure of Au40(SC2H4Ph)24 nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.