Abstract

The manufacturing process of structural wide flange steel sections introduces residual stresses in the material. These stresses due to hot-rolling or welding influence the inelastic buckling response of structural steel members and need to be taken into account in the design. Based on experimental data standardized residual stress models have been proposed for inclusion in inelastic buckling analyses. By incorporating these residual stress models their effect on the resistance of beams and columns can be obtained. Residual stress models for roller bent steel sections are currently not available. Roller bent wide flange sections are manufactured by curving straight members at ambient temperature. This manufacturing technique, which is also known as roller bending, stresses the material beyond its yield stress, thereby overriding the initial residual stresses prior to bending and generating an entirely new pattern. This paper proposes a residual stress model for roller bent wide flange sections, based on earlier conducted numerical investigations which were validated by experimental research performed at Eindhoven University of Technology. The proposed residual stress model can serve as an initial state of a roller bent steel section in fully non-linear finite element analyses to accurately predict its influence on the inelastic buckling response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.