Abstract

The cable lifting construction method is the most widely used construction method for large-span arch bridges. The correct calculation and analysis of cable lifting construction is essential to ensure the safety and linearity in the construction of arch bridges. The existing research mainly focuses on the construction scheme and finite element analysis of cable lifting for large-span arch bridges. There is relatively little research on calculation theory, and there is no analytical method for cable lifting construction of arch bridges. To calculate and analyze cable lifting construction more quickly and accurately, based on the deformation coordination principle and suspension cable theory, a practical calculation method is proposed to calculate the load of the tower acting by a cable system in the cable lifting construction of arch bridges. A large-span arch bridge under construction was used as a case study, and the correctness of the calculation method was verified by measuring the displacements of the tower top. A brief description of the structure, verification method, and verification process is presented. The displacement results are calculated by the numerical calculation software SAP2000, the actual measured displacement data are discussed and comparatively analyzed, and the correctness and calculation accuracy of the proposed calculation method are also evaluated. The results show that the calculation method has sufficient accuracy. The tower load calculation is mainly undertaken to prepare for the analysis of the tower mechanical properties; therefore, the calculation method is applied to towers of the case engineering, and the stability, load carrying capacity, and deformation of the tower are analyzed to verify whether its mechanical properties meet the engineering requirements. The results show that steel pipe columns of the buckle tower are prone to twisting instability. The normal stress of the tower’s part of the pressurized rod or pressurized bending rod is larger. Wind cable load calculation models and tower design-related recommendations are presented in this tower analysis. The tower load calculation method and tower mechanics analysis method in this study can provide guidance for the calculation and analysis of the cable lifting construction of large-span arch bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call