Abstract
The combination of deep neural networks and assistance vector machines for hyperspectral image recognition is presented in this work. A key issue in the real-world hyperspectral imaging system is hyperspectral picture recognition. Although deep learning can replicate highly dimensional feature vectors from source data, it comes at a high cost in terms of time and the Hugh phenomenon. The selection of the kernel feature and limit has a significant impact on the presentation of a kernel-based learning system. We introduce Support Vector Machine (SVM), a kernel learning method that is used to feature vectors obtained from deep learning on hyperspectral images. By modifying the data structure's parameters and kernel functions, the learning system's ability to solve challenging problems is enhanced. The suggested approaches' viability is confirmed by the outcomes of the experiments. At a particular rate, accuracy of testing for classification is around 90%. Moreover, to significantly make framework robust, validation is done using 5-flod verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.