Abstract
SummaryThe Asymmetric Friction Connection (AFC) remains elastic during moderate earthquake shaking but slides and dissipates energy through friction during severe earthquake shaking. The sliding friction forces developed are dependent on the clamping force in the connection which is provided by fully tensioned bolts which pass through slotted holes. During sliding these bolts are subject to moment and shear as well as axial force. Moment–shear–axial force interaction reduces the clamping axial force on the sliding interfaces thereby reducing the sliding shear resistance (Vss). Two methods to evaluate the moment–shear–axial force interaction have been proposed so that the sliding shear strength can be quantified, but as yet, these methods are not robust. This paper describes the results of 60 tests undertaken to improve the two methods, namely the moment–shear–axial force bolt model and the effective coefficient of friction method, for AFCs with high hardness steel shims. The bolts were M16 to M30 bolts and cleat thicknesses ranged from 12 mm to 25 mm. It is shown that either method may be used in design as the results obtained are similar. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.