Abstract

We investigated the cytotoxic activities of crocin and crocetin, 2 major carotenoids isolated from the stigma of Crocus sativus (saffron), on 5 human cancer cell lines and proposed their possible anticancer mechanisms. Crocetin, a glycosylated carotenoid, showed approximately 5- to 18-fold higher cytotoxicity than crocin, a carboxylic carotenoid (IC50 of 0.16-0.61 mmol/L for crocetin vs. 2.0-5.5 mmol/L for crocin). This suggests that structural differences account for the different efficacies between them. Fluorescence-activated cell sorting (FACS) analysis showed that crocetin induced a significant level of cellular reactive oxygen species (ROS) in HeLa cells, whereas crocin did not. This ROS induction supported the cytotoxicity of crocetin, but not of crocin. A significant activation of nuclear factor erythroid 2-related factor 2 (Nrf2) was observed in both HeLa cells treated with crocin and crocetin: a 3.0-fold increase by 1 mmol/L crocetin and a 1.6-fold increase by 0.8 mmol/L crocin compared to the control. Furthermore, both crocetin and crocin reduced the protein expression of lactate dehydrogenase A (LDHA), one of the targets for chemoprevention in cancer cells, by 34.2% and 10.5%, respectively, compared to the control in HeLa cells. These findings suggest that crocetin and crocin have different mechanisms for their observed cytotoxicity in cancer cell lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call