Abstract
A model for the crystal structure of carbadox has been generated and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Carbadox crystallizes in space group P21 (#4) with a = 13.8155(3), b = 21.4662(1), c = 16.3297(3) Å, β = 110.0931(7)°, V = 4548.10(3) Å3, and Z = 16. The crystal structure is characterized by approximately parallel stacking of the eight independent carbadox molecules parallel to the bc-plane. There are two different molecular configurations of the eight carbadox molecules; five are in the lower-energy configuration and three are in a ~10% higher-energy configuration. This arrangement likely achieves the lowest-energy crystalline packing via hydrogen bonding. Hydrogen bonds link the molecules both within and between the planes. Each of the amino groups forms a N–H⋯O hydrogen bond to an oxygen atom of the 1,4-dioxidoquinoxaline ring system of another molecule. The result is four pairs of hydrogen-bonded molecules, which form rings with graph set R2,2(14). Variation in specimen preparation can affect the preferred orientation of particles considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.