Abstract
In this paper, we proposed a fusion feature extraction method for content based image retrieval. The feature is extracted by focusing on the texture and shape features of the visual image by using the Local Binary Pattern (LBP – texture feature) and Edge Histogram Descriptor (EHD – shape feature). The SVD is used for decreasing the number of the feature vector of images. The Kd-tree is used for reducing the retrieval time. The input to this system is a query image and Database (the reference images) and the output is the top n most similar images for the query image. The proposed system is evaluated by using (precision and recall) to measure the retrieval effectiveness. The values of the recall are between [43% –93%] and the average recall is 64.3%. The values of precision are between [30%-100%] and the average is 72.86% for the entire system and for both databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.