Abstract

Object Detection requires many precise annotations, which are available for natural images but not for many non-natural data sets such as artworks data sets. A solution is using Weakly Supervised Object Detection (WSOD) techniques that learn accurate object localization from image-level labels. Studies have demonstrated that state-of-the-art end-to-end architectures may not be suitable for domains in which images or classes sensibly differ from those used to pre-train networks. This paper presents a novel two-stage Weakly Supervised Object Detection approach for obtaining accurate bounding boxes on non-natural data sets. The proposed method exploits existing classification knowledge to generate pseudo-ground truth bounding boxes from Class Activation Maps (CAMs). The automatically generated annotations are used to train a robust Faster R-CNN object detector. Quantitative and qualitative analysis shows that bounding boxes generated from CAMs can compensate for the lack of manually annotated ground truth (GT) and that an object detector, trained with such pseudo-GT, surpasses end-to-end WSOD state-of-the-art methods on ArtDL 2.0 (≈41.5% mAP) and IconArt (≈17% mAP), two artworks data sets. The proposed solution is a step towards the computer-aided study of non-natural images and opens the way to more advanced tasks, e.g., automatic artwork image captioning for digital archive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.