Abstract

We propose an experimental protocol to directly observe the Kondo effect by scattering ultracold atoms with spin-dependent interactions. We propose using an optical Feshbach resonance to engineer Kondo-type spin-dependent interactions in a system with ultracold $^6$Li and $^{87}$Rb gases. We calculate the momentum transferred from the $^{87}$Rb gas to the $^6$Li gas in a scattering experiment and show that it has a logarithmically enhanced temperature dependence, characteristic of the Kondo effect and analogous to the resistivity of alloys with magnetic impurities. Experimentally detecting this enhancement will give a different perspective on the Kondo effect, and allow us to explore a rich variety of problems such as the Kondo lattice problem and heavy-fermion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.