Abstract

A new method for numerical simulation of failure behavior, namely, FEM- β , is proposed. For a continuum model of a deformable body, FEM- β solves a boundary value problem by applying particle discretization to a displacement field; the domain is decomposed into a set of Voronoi blocks and the non-overlapping characteristic functions for the Voronoi blocks are used to discretize the displacement function. By computing average strain and average strain energy, FEM- β obtains a numerical solution of the variational problem that is transformed from the boundary value problem. In a rigorous form, FEM- β is formulated for a variational problem of displacement and stress with different particle discretization, i.e., the non-overlapping characteristic function of the Voronoi blocks and the conjugate Delaunay tessellations, respectively, are used to discretize the displacement and stress functions. While a displacement field is discretized with non-smooth functions, it is shown that a solution of FEM- β has the same accuracy as that of ordinary FEM with triangular elements. The key point of FEM- β is the ease of expressing failure as separation of two adjacent Voronoi blocks owing to the particle discretization that uses non-overlapping characteristic functions. This paper explains these features of FEM- β with results of numerical simulation of several example problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.