Abstract
In-memory computing (IMC) is an effective solution for energy-efficient artificial intelligence applications. Analog IMC amortizes the power consumption of multiple sensing amplifiers with an analog-to-digital converter (ADC) and simultaneously completes the calculation of multi-line data with a high parallelism degree. Based on a universal one-transistor one-magnetic tunnel junction (MTJ) spin transfer torque magnetic RAM (STT-MRAM) cell, this paper demonstrates a novel tunneling magnetoresistance (TMR) ratio magnifying method to realize analog IMC. Previous concerns including low TMR ratio and analog calculation nonlinearity are addressed using device-circuit interaction. The TMR is magnified <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$7500\times $ </tex-math></inline-formula> using a latch structure in combination with the device. Peripheral circuits are minimally modified to enable in-memory matrix-vector multiplication. A current mirror with a feedback structure is implemented to enhance analog computing linearity and calculation accuracy. The proposed design maximumly supports 1024 2-bit input and 1-bit weight multiply-and-accumulate (MAC) computations simultaneously. The proposal is simulated using the 28-nm CMOS process and MTJ compact model. The integral nonlinearity is reduced by 57.6% compared with the conventional structure. 9.47-25.4 TOPS/W is realized with 2-bit input, 1-bit weight, and 4-bit output convolution neural network (CNN).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.