Abstract
Maintenance of upright stance is one of the basic requirements in human daily life. Stance postural control is achieved based on multisensory inputs such as visual, vestibular and proprioceptive somatosensory inputs. In this paper, we proposed a stance postural control model including a neural controller with feed-forward inputs (muscle stiffness regulation) and sensory feedback of vestibular and proprioceptive somatosensory sensation. Through the optimization, variables of neural controller were designed to keep a musculoskeletal model standing during a 5 s forward dynamics simulation. From the results, we found that when both vestibular and proprioceptive somatosensory sensory input are available, low muscle stiffness is enough to maintain the balance of a musculoskeletal model in a stance posture. However, when vestibular sensory input get lost, higher muscle stiffness will be desired to keep the musculoskeletal model standing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.