Abstract

This work evaluated the formation of transformation products (TPs) during the degradation of diazepam (DZP) by a solar photo-Fenton process. Six TPs were identified, three of them for the first time. After elucidation of the TPs, a new, cheap, fast, and easy method was employed to extract and preconcentrate DZP and its TPs, using dispersive liquid-liquid microextraction (DLLME). The method was optimized using factorial and Doehlert designs, with the best results obtained using acetonitrile as disperser solvent and chloroform as extraction solvent, with volumes of 1000 and 650 µL, respectively. When DZP degradation was performed in ultrapure water, the extraction/preconcentration of DZP and its TPs by DLLME was very similar to the results obtained using a traditional SPE method. However, when hospital wastewater was used as the matrix, more limited extraction efficiency was obtained using DLLME, compared to SPE. Meanwhile, all the TPs extracted by SPE were also extracted by the DLLME technique. Furthermore, DLLME was much less expensive than SPE, besides being faster, easier, and requiring only small amounts of organic solvents. This work reports a new and very important tool for the extraction and preconcentration of TPs formed during degradation using techniques such as advanced oxidation processes (AOPs), since without this step it would not be possible to identify all the TPs formed in some complex wastewater matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call