Abstract

This paper proposes a novel in vitro exposure system operating at millimeter-wave (mmWave) 28 GHz, one of the frequency bands under consideration for fifth generation (5G) communication. We employed the field uniformity concept along cross-sectional observation planes at shorter distances from the radiation antenna for better efficiency and a small-size system. A choke-ring antenna was designed for this purpose in consideration of a wider beamwidth (BW) and a symmetric far-field pattern across three principal planes. The permittivity of Dulbecco's modified Eagle's medium solution was measured to examine the specific absorption rate (SAR) of the skin cell layer inside a Petri dish model for a three-dimensional (3D) cell culture in vitro experiment. The best deployment of Petri dishes, taking into account a geometrical field symmetry, was proposed. Local SAR values within the cell layer among the Petri dishes were determined with different polarization angles. It was determined that this polarization effect should be considered when the actual exposure and deployment were conducted. We finally proposed an in vitro exposure system based on the field uniformity including downward exposure from an antenna for 3D cell culture experiments. A small-size chamber system was obtained, and the size was estimated using the planar near-field chamber design rule. Bioelectromagnetics. 2019;40:445-457. © 2019 Bioelectromagnetics Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.