Abstract

The challenge of video grounding - localizing activities in an untrimmed video via a natural language query - is to tackle the semantics of vision and language consistently along the temporal dimension. Most existing proposal-based methods are trapped by computational cost with extensive candidate proposals. In this paper, we propose a novel proposal-free framework named Contextual Pyramid Network (CPNet) to investigate multi-scale temporal correlation in the video. Specifically, we propose a pyramid network to extract 2D contextual correlation maps at different temporal scales (T*T, T/2*T/2, T/4*T/4), where the 2D correlation map (past to current & future to current) is designed to model all the relations of any two moments in the video. In other words, CPNet progressively replenishes the temporal contexts and refines the location of queried activity by enlarging the temporal receptive fields. Finally, we implement a temporal self-attentive regression (i.e., proposal-free regression) to predict the activity boundary from the above hierarchical context-aware 2D correlation maps. Extensive experiments on ActivityNet Captions, Charades-STA, and TACoS datasets demonstrate that our approach outperforms state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.