Abstract

Topological nodal-line semimetals are predicted to exhibit unique drumheadlike surface states (DSSs). Yet, direct detection of such states remains a challenge. Here, we propose spin-resolved transport in a junction between a normal metal and a spin-orbit coupled nodal-line semimetal as the mechanism for their detection. Specifically, we find that in such an interface the DSSs induce resonant spin-flipped reflection. This effect can be probed by both vertical spin transport and lateral charge transport between antiparallel magnetic terminals. In the tunneling limit of the junction, both spin and charge conductances exhibit a resonant peak around zero energy, providing unique evidence of the DSSs. This signature is robust to both dispersive DSSs and interface disorder. Based on numerical calculations, we show that the scheme can be implemented in the topological semimetal HgCr_{2}Se_{4}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.