Abstract

Opportunities for the monolithic integration of a novel common quantum dot (QD)-active electroabsorption modulated laser are explored. An electric-field and temperature-dependent spectroscopic study of optical absorption and gain are presented in the state-of-the-art 1.3- $\mu \text{m}$ In(Ga)As/GaAs QD active material. The unique gain/absorption spectral shape, attributed to the QD’s density of states, allows for a number of possible modulation schemes dependent upon the selected laser wavelength detuning from the gain peak. Intensity modulation and change in absorption, leading to negative chirp operation, are demonstrated via absorption spectroscopy and gain measurement of eight-layer-stack QD-active material. Such a device would be able to provide positive or negative chirp dependent upon modulation scheme and gain/Bragg wavelength detuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.