Abstract

Optical atomic clocks with compact size, reduced weight and low power consumption have broad out-of-the-lab applications such as satellite-based geo-positioning and communication engineering. Here, we propose an active optical microclock based on the lattice-trapped atoms evanescently interacting with a whispering-gallery-mode microcavity. Unlike the conventional passive clock scheme, the active operation directly produces the optical frequency standard without the need of extra laser stabilization, substantially simplifying the clock configuration. The numerical simulation illustrates that the microclock’s frequency stability reaches at 1 s of averaging, over one order of magnitude better than the recently demonstrated chip-scale optical clock that is built upon rubidium vapor cell and also more stable than current cesium fountain clocks and hydrogen masers. Our work extends the chip-scale clocks to the active fashion, paving the way towards the on-chip quantum micro-metrology, for example, the optical frequency comparison and synchronization between multiple microclocks through frequency microcombs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.