Abstract

Gedanken experiments help to reconcile our classical intuition with quantum mechanics and nowadays are routinely performed in the laboratory. An important open question is the quantum behavior of the controlling devices in such experiments. We propose a framework to analyze quantum-controlled experiments and illustrate it by discussing a quantum version of Wheeler's delayed-choice experiment. Using a quantum control has several consequences. First, it enables us to measure complementary phenomena with a single experimental setup, pointing to a redefinition of complementarity principle. Second, it allows us to prove there are no consistent hidden-variable theories having "particle" and "wave" as realistic properties. Finally, it shows that a photon can have a morphing behavior between particle and wave. The framework can be extended to other experiments (e.g., Bell inequality).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.