Abstract
Continuous cooling transformation (CCT) diagrams of base metals are common in welding. They can be built using physical or numerical simulations, each with advantages and limitations. However, those are not usual for weld metal, considering its variable composition due to the dilution of the weld into the base metal. Wire Arc Additive Manufacturing (WAAM) is a distinctive case in which the interest in materials comparable with weld composition raises attention to estimating their mechanical properties. Notwithstanding, this concept is still not used in WAAM. Therefore, the aim of this work was to address a methodology to raise MC-CCT (Multiple Cycle Continuous Cooling Transformation) diagrams for WAAM by combining physical and numerical simulations. A high-strength low-alloy steel (HSLA) feedstock (a combination of a wire and a shielding gas) was used as a case study. To keep CCT as representative as possible, the typical multiple thermal cycles for additive manufacturing thin walls were determined and replicated in physical simulations (Gleeble dilatometry). The start and end transformations were determined by the differential linear variation approach for each thermal cycle. Microstructure analyses and hardness were used to characterise the product after the multiple cycles. The same CCT diagram was raised by a commercial numerical simulation package to determine the shape of the transformation curves. A range of austenitic grain sizes was scanned for the curve position matching the experimental results. Combining the experimental data and numerically simulated curves made estimating the final CCT diagram possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.