Abstract

In this paper, we optimize vapor compression system (VCS) power consumption through the application of a novel proportional–integral extremum-seeking controller (PI-ESC) that converges at the same timescale as the process. This extremum-seeking method uses time-varying parameter estimation to determine the local gradient in the map from manipulated inputs to performance output. Additionally, the extremum-seeking control law includes terms proportional to the estimated gradient, which requires subsequent modification of the estimation routine in order to avoid bias. The PI-ESC algorithm is derived and compared to other methods on a benchmark example that demonstrates the improved convergence rate of PI-ESC. PI-ESC is applied to the problem of compressor discharge temperature setpoint selection for a VCS such that power consumption is driven to a minimum. A physics-based simulation model of the VCS is used to demonstrate that with PI-ESC, convergence to the optimal operating point occurs faster than the bandwidth of typical disturbances—enabling application of extremum-seeking control to VCSs in environments under realistic operating conditions. Finally, experiments on a production room air conditioner installed in an adiabatic test facility validate the approach in the presence of significant noise and actuator and sensor quantization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.