Abstract
In multi-rate wireless LANs, throughput-based fair bandwidth allocation can lead to drastically reduced aggregate throughput. To balance aggregate throughput while serving users in a fair manner, proportional fair or time-based fair scheduling has been proposed to apply at each access point (AP). However, since a realistic deployment of wireless LANs can consist of a network of APs, this paper considers proportional fairness in this much wider setting. Our technique is to intelligently associate users with APs to achieve optimal proportional fairness in a network of APs. We propose two approximation algorithms for periodical offline optimization. Our algorithms are the first approximation algorithms in the literature with a tight worst-case guarantee for the NP-hard problem. Our simulation results demonstrate that our algorithms can obtain an aggregate throughput which can be as much as 2.3 times more than that of the max-min fair allocation in 802.11b. While maintaining aggregate throughput, our approximation algorithms outperform the default user-AP association method in the 802.11b standard significantly in terms of fairness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.