Abstract

In energy-limited networks, battery-powered nodes suffer from energy famine, which can reduce network lifetime and affect the robustness of networks. To alleviate an energy problem, it is possible to harvest energy from ambient radio frequency signals. In this paper, we consider a proportional fair energy efficiency, which jointly considers energy efficiency and fairness in energy-harvesting-based wireless networks. We formulate a nonconvex optimization problem for solving subchannel and power allocation in order to maximize proportional fair energy efficiency. Using nonlinear fractional programming, we transform the optimization problem into a tractable convex problem. We also derive the solution of the transformed problem and propose a resource allocation algorithm using an iterative method. In addition, we prove the convergence of the proposed algorithm in view of a suboptimal point. Through intensive simulations, we compare the performance of our proposed algorithm with those of conventional algorithms. It is shown that the proposed algorithm improves fairness considerably while maintaining energy efficiency, compared with conventional algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.