Abstract

Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid argon had a minor (56 ppm) admixture of nitrogen, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase cryogenic avalanche detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the vacuum ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near ultraviolet (UV), at 300–450 nm (N2 second positive system emission), via cryogenic photomultiplier tubes (PMTs) and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109 ± 10 photons per drifting electron per kV overall in the VUV and UV, of which 51 ± 6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7 ± 0.2 kV/cm, was in accordance with that predicted by the theory. The latter result is particularly relevant to DarkSide and SCENE dark matter search-related experiments, where the operation electric field was thereby on the verge of appearance of the S2 (ionization-induced) signal. The results obtained pave the way to the development of N2-doped two-phase Ar detectors with enhanced sensitivity to the S2 signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.