Abstract
This paper analyzes the motion stability of a 16-pole rotor-active magnetic bearings (rotor-AMB) system and investigates the complex vibrations under a proportional-derivative (PD) controller. First, electromagnetic theory and Newton’s second law are applied to derive the two-degree-of-freedom differential governing equations for the 16-pole rotor-AMB system, incorporating the PD control terms. The resulting differential equations include parametrically excited, quadratic nonlinear, and cubic nonlinear terms. Subsequently, the multiple time scales perturbation analysis method is performed on the obtained governing equations, yielding four-dimensional averaged equations in both Cartesian and polar coordinates. Finally, numerical simulations including the amplitude–frequency response characteristics, motion trajectories, energy–amplitude relationships, as well as bifurcation and chaotic motion of the system are studied. The results indicate that the PD controller affects the softening and hardening spring characteristics of the system and has significant control effects on the system’s amplitude, energy, and stability. Additionally, increasing the differential gain coefficient [Formula: see text] can change the system’s motion from chaotic to periodic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.