Abstract

Vascular endothelial cells play an important role in maintaining cardiovascular homeostasis. Oxidative stress is a critical pathogenic factor in endothelial cell damage and the development of cardiovascular diseases. In this study we evaluated the effects of propofol on oxidative stress-induced endothelial cell insults and the role of serine-threonine kinase Akt modulation of endothelial nitric oxide synthase (eNOS) as a mechanism of protection. Human umbilical vein endothelial cells were used as the experimental model. Hydrogen peroxide (H2O2, 100 microM) was used as the stimulus of oxidative stress. Study groups included 1) control; 2) cells incubated with H2O2 alone; 3) cells incubated with propofol (50 microM) alone; or 4) cells pretreated with propofol 50 microM for 30 min then co-incubated with H2O2. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Trypan blue dye exclusion test. Cell apoptosis was evaluated by Hoechst 33258 staining. Caspase-3 activity was determined by the colorimetric CaspACE Assay System. Expressions of Akt, phospho-Akt, and eNOS were detected by Western blotting. H2O2 decreased cell viability, induced apoptosis, and increased caspase-3 activity in human umbilical vein endothelial cells. Propofol significantly protected cells from H2O2-induced cell damage, apoptosis and decreased H2O2-induced increase in caspase-3 activity. Propofol treatment significantly increased eNOS expression compared to control and H2O2-stimulated cells. There was no significant difference in phospho-Akt (Ser 473 or Thr 308) expression among the groups. Propofol 50 microM can reduce H2O2-induced damage and apoptosis in endothelial cells, by suppressing caspase-3 activity and by increasing eNOS expression via an Akt-independent mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.