Abstract
Propofol is a short-acting intravenous anesthetic that is widely used in clinical treatment. Previous articles have indicated that propofol is a therapeutic target for anti-apoptosis, anti-inflammation, anti-lipid peroxidation, and anti-reactive oxygen species (ROS). Moreover, cell ferroptosis is strongly correlated with cellular ROS, inflammatory responses, and lipid peroxidation. However, the mechanisms by which propofol attenuates neuronal injury by reducing ferroptosis remain unknown. Hence, we hypothesized that propofol could protect neurons by reducing ferroptosis. To test this hypothesis, HT-22 cells were treated with a specific ferroptosis activator (erastin) in the presence of propofol (50 μM). We found that propofol reduced erastin-induced high Fe2+ concentrations, lipid peroxides, and excess ROS. Western blotting results also suggested that propofol could rescue erastin-induced low expression of GXP4 and system Xc-. Further experiments indicated that propofol attenuated p-ALOX5 expression at Ser663 independent of ERK. In addition, we built two transient transfection cell lines, ALOX5 OE and Ser663Ala-ALOX5 OE, to confirm the target of propofol. We found that the Ser663 point is the critical role of propofol in rescuing erastin-induced cell injury/lipid peroxidation. In conclusion, propofol may help attenuate ferroptosis, which may provide a new therapeutic method to treat neuronal injury or the brain inflammatory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.