Abstract

Objective This study explores the effect and mechanism of propofol for thyroid tumor. Methods Culture human normal thyroid cells Nthy-ori 3-1 and thyroid cancer cell line TPC-1. TPC-1 cells were divided into the propofol group (treated with propofol), miR-141-3p group (transfected with the miR-141-3p mimic), negative control group (transfected with miR-NC), miR-141-3p + pcDNA-BRD4 group (transfected with the miR-141-3p mimic and pcDNA-BRD4), miR-141-3p + pcDNA group (transfected with the miR-141-3p mimic and pcDNA), siBRD4 group (transfected with siBRD4), and si-control group (transfected with si-control). The detection of miR-141-3p and BRD4 expression in cells was done by RT-qPCR, and the dual-luciferase reporter gene method and western blotting were used to verify the targeting relationship between miR-141-3p and BRD4. MTT method was used to test cell proliferation, transwell method was used to test cell migration and invasion, and western blotting was used to test SHH, GLI1, p-PI3K, and p-AKT protein expression. Results Compared with Nthy-ori 3-1 cells, the expression of miR-141-3p in TPC-1 cells was markedly decreased. Propofol treatment and excessive expression of miR-141-3p could influence the phenotype of TPC-1 cells. BRD4 is one of the target genes of miR-141-3p, and its expression is negatively regulated by miR-141-3p. Overexpression of BRD4 can partially reverse the restraining effect of miR-141-3p on the TPC-1 cell phenotype. Both miR-141-3p and BRD4 can regulate the activity of SHH and PI3K/AKT signaling pathways. Conclusion Propofol can inhibit the activity of SHH and PI3K/AKT pathways by targeting downregulating BRD4 through miR-141-3p, thereby inhibiting the phenotype of TPC-1 cells.

Highlights

  • Objective. is study explores the effect and mechanism of propofol for thyroid tumor

  • TPC-1 cells were divided into the propofol group, miR-141-3p group, negative control group, miR-1413p + pcDNA-BRD4 group, miR-141-3p + pcDNA group, siBRD4 group, and si-control group. e detection of miR-141-3p and BRD4 expression in cells was done by RT-qPCR, and the dual-luciferase reporter gene method and western blotting were used to verify the targeting relationship between miR-141-3p and BRD4

  • Papillary thyroid cancer (PTC), which is less malignant and has a better prognosis, is the most common [1]. e morbidity is related to locality, race, and sexual distinction. e incidence of women is higher, and the incidence is on the rise [2]

Read more

Summary

Research Article

Propofol Inhibits Thyroid Cancer Cell Proliferation, Migration, and Invasion by Suppressing SHH and PI3K/AKT Signaling Pathways via the miR-141-3p/BRD4 Axis. E detection of miR-141-3p and BRD4 expression in cells was done by RT-qPCR, and the dual-luciferase reporter gene method and western blotting were used to verify the targeting relationship between miR-141-3p and BRD4. Overexpression of BRD4 can partially reverse the restraining effect of miR-141-3p on the TPC-1 cell phenotype. Both miR-141-3p and BRD4 can regulate the activity of SHH and PI3K/AKT signaling pathways. Propofol can inhibit the activity of SHH and PI3K/ AKT pathways by targeting downregulating BRD4 through miR-141-3p, thereby inhibiting the phenotype of TPC-1 cells. E effect of propofol on miR-141-3p expression in thyroid cancer cells has not been reported. Our study intends to discuss the mechanism of propofol in the progression of thyroid cancer, so as to provide theoretical reference to the therapy of thyroid carcinoma

Materials and Methods
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.