Abstract

Propofol may exert negative inotropic and chronotropic actions in the heart. Single-channel studies show that propofol affects the kinetics of opening and closing of cardiac L-type calcium channels (ICa(L)) without altering channel conductance. The aim of this study was to investigate the mechanisms of depressant effects of propofol on cardiac whole-cell ICa(L). Single ventricular myocytes were freshly dissciated from guinea pig hearts using enzymatic isolation. One-suction electrode voltage-clamp technique (whole-cell mode) was used. LCa(L) was separated from other contaminated ionic currents. Propofol was applied in the commercial 10% Intralipid emulsion formula (Zeneca, UK). In isolated cardiomyocytes, propofol significantly inhibited whole-cell ICa(L) in a concentration-dependent manner (K D = 52.0 microM; Hill coefficient = 1.3). The solvent (Intralipid) did not affect ICa(L). Propofol decreased ICa(L) at all potentials tested along the voltage axis and reduced the slope conductance. The threshold potential for activation and the peak potential of the current-voltage relationship were not changed by propofol. The steady-state activation curves overlapped in the absence and the presence of 56 microM propofol. In contrast, the steady-state inactivation curve was shifted in the hyperpolarizing direction. The time course of the recovery from inactivation was delayed by 56 microM propofol. The blocking action on ICa(L) of propofol shows marked resting block and use-dependent block. Propofol caused more pronounced inhibition at a higher stimulation frequency. The effect of propofol on the inactivation process was even more clear on ICa(L). The authors conclude tha propofol, at supratherapeutic concentrations, inhibits cardiac ICa(L). This inhibition is mainly due to a shift of inactivation curve and a reduction in slope conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.