Abstract

Propofol is generally used for the induction and maintenance of anesthesia in clinical procedures via activation of γ -aminobutyric acid A (GABAA) receptors. When administered at the clinical dose, propofol use is associated with movement disorders, including dystonia and ataxia, suggesting that propofol administration impacts the function of cerebellar neuronal circuitry. In this study, we investigated the effect of propofol on climbing fiber (CF)-Purkinje cell (PC) synaptic transmission in mouse cerebellar slices in the absence of GABAergic inhibition using a whole-cell recording technique and pharmacological methods. Our results showed that bath application of propofol enhanced CF-PC synaptic transmission, which was demonstrated by an increased amplitude and area under the curve (AUC) of the excitatory postsynaptic currents (EPSCs) accompanied by a decrease in the paired-pulse ratio (PPR). The propofol-induced increase in the amplitude of P1 was concentration-dependent with a half effective concentration (EC50) of 20.9 μM. The propofol-induced increases in the amplitude and AUC of CF-PC EPSCs were abolished by an N-Methyl-D-aspartate (NMDA) receptor blocker. Furthermore, the application of NMDA enhanced CF-PC EPSCs and overwhelmed the effect of propofol on CF-PC EPSCs. Moreover, intracellular blockade of NMDA receptors attenuated the propofol-induced enhancement of CF-PC synaptic transmission but strengthened the propofol-induced change in the PPR. These results indicate that propofol enhances CF-PC synaptic transmission by activation of NMDA receptors in the mouse cerebellar cortex, suggesting that propofol administration might be involved in propofol-induced dysfunction of the cerebellum via NMDA receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.