Abstract

The purpose of this study was to examine the direct effects of propofol on ischemia-reperfusion injury using an isolated Langendorff rat heart preparation. Hearts were perfused with Krebs-Henseleit (K-H) solution (control); intralipid; or 10, 30, and 100 micro M propofol. Hearts were rendered globally ischemic for 25 min, then reperfusion was begun with K-H solution for 30 min. Treatment with 100 micro M propofol delayed the onset of contracture during ischemia compared with control or intralipid treatments (6.4 +/- 2.1 vs 4.4 +/- 1.4 or 4.1 +/- 0.7 min, respectively; P < 0.05). During reperfusion, 100 micro M propofol increased coronary flow and reduced lactate dehydrogenase release compared with control or intralipid treatments. After 30 min of reperfusion, left ventricular developed pressure (LVDP) returned to 55 and 76 mm Hg in the 30 and 100 micro M propofol-treated groups, respectively, whereas LVDP was 39 mm Hg in the control group. The hearts treated with 100 micro M propofol showed significantly lower left ventricular end-diastolic pressure compared with the control or intralipid groups 30 min after reperfusion (29 +/- 13 vs 48 +/- 5 or 48 +/- 11 mm Hg, respectively; P < 0.05). In histological evaluation, control and intralipid hearts had increased injury severity scores compared with hearts treated with 100 micro M propofol (1.8 +/- 0.9 and 1.7 +/- 0.8 vs 1.0 +/- 0.7, respectively; P < 0.05). In conclusion, we suggest that propofol administered before and during global myocardial ischemia has cardioprotective effects on ischemia-reperfusion injury. Implications: It is important to protect the heart from injury by ischemia and reperfusion. The current study demonstrates that in the isolated rat heart, propofol attenuates mechanical, biochemical, and histological changes causes by ischemia and reperfusion. (Anesth Analg 1997;85:719-24)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.