Abstract
[Abridged] We imaged a 2' x 2' region of the Orion Nebula cluster in 1.3 mm wavelength continuum emission with the recently commissioned Combined Array for Research in Millimeter Astronomy (CARMA) and with the Submillimeter Array (SMA). Our mosaics include >250 known near-IR cluster members, of which 36 are so-called proplyds that have been imaged previously with the Hubble Space Telescope. We detected 40 sources in 1 mm continuum emission, and several of them are spatially resolved with our observations. Dust masses inferred for detected sources range from 0.01 to 0.5 Msun, and the average disk mass for undetected sources is estimated to be ~0.001 Msun, approximately an order of magnitude smaller than the minimum mass solar nebula. Most stars in the ONC thus do not appear to currently possess sufficient mass in small dust grains to form Jupiter-mass (or larger) planets. Comparison with previous results for younger and older regions indicates that massive disks evolve significantly on ~Myr timescales. We also show that the percentage of stars in Orion surrounded by disks more massive than ~0.01 Msun is substantially lower than in Taurus, indicating that environment has an impact on the disk mass distribution. Finally, we explore potential correlations of disk mass with stellar mass and location within the cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.