Abstract
Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters produced by a wide range of bacteria as carbon and energy reserves. PHA accumulation is typically increased under unbalanced growth conditions and with carbon source in excess. Although polyhydroxybutyrate (PHB) could be used for specific applications, it is brittle and not a useful alternative for plastics like polypropylene. Far more useful polypropylene-like PHAs, are copolymers composed of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Propionic acid is one of the carbon sources that can be used to generate 3HV. A mutant derived from Herbaspirillum seropedicae Z69, a strain previously described as capable of producing P(3HB-co-3HV) from propionic acid, was constructed to increase 3HV biosynthetic efficiency. The strategy involved elimination of a catabolic route for propionyl-CoA by deficiency marker exchange of a selected gene. The mutant (Z69Prp) was constructed by elimination of the 2-methylcitrate synthase (PrpC) gene of the 2-methylcitrate cycle for propionate catabolism. Strain Z69Prp was unable to grow on sodium propionate, but in cultures with glucose-propionate accumulated 50% of its dry weight as copolymer. Z69Prp had 14.1 mol% 3HV; greater than that of strain Z69 (2.89 mol%). The 3HV yield from propionic acid (Y3HV/prop) was 0.80 g g−1, and below the maximum theoretical value (1.35 g g−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.